
Suppressing chaos in lasers by negative feedback

R. Meucci, M. Ciofini, and R. Abbate
Istituto Nazionale di Ottica, Largo Enrico 6, 50125 Florence, Italy

~Received 22 February 1996!

An easy to implement method for stabilizing periodic orbits in a modulated laser is presented. Such a
method is based on negative feedback of subharmonic components extracted from the temporal intensity
signal. Robustness, speed, and general validity of this scheme for other laser systems are also discussed.
@S1063-651X~96!50906-2#

PACS number~s!: 05.45.1b, 42.50.Lc, 42.55.Lt

In the last few years different schemes for controlling
chaos to periodic orbits have been proposed. The main com-
mon characteristic of all these schemes is that the chaotic
motion in the phase space can be directed into a required
periodic orbit by applying tiny perturbations. In this way, a
relevant change in the dynamical behavior can be induced
while the energy required for the control should be as small
as possible.

In order to perform a simple classification of control
methods, two main categories can be defined: feedback and
nonfeedback methods. The main feedback techniques, which
allow stabilization of orbits embedded in the chaotic attrac-
tor, are the Ott-Grebogi-Yorke~OGY! method@1# ~with its
implementations known as occasional proportional feedback
~OPF! @2# and minimal expected deviation~MED! @3#!, and
the self controlling feedback methods@4,5#. The OGY, OPF,
and MED methods consist in adjusting an accessible control
parameter each time the system passes through a given Poin-
carésection to guide the trajectory to a selected orbit~corre-
sponding to a fixed point in the Poincare´ section!. The OGY
algorithm presents some difficulties if applied to fast dynam-
ics, since the state of the systems must be accurately moni-
tored and the feedback signal suddenly changed when the
trajectory crosses the Poincare´ section. On the contrary, the
self controlled feedback schemes use a continuous rather
than abruptly changed feedback signal of the form
«(t);g@x(t)2x(t2t)#, wherex(t) is a dynamical variable
andt is the period of the desired periodic orbit. Implemen-

tations @5# of the original scheme proposed by Pyragas are
based on the introduction of a suitable weight factor on the
delayed variablex(t2t) or on variability of the gaing. In
this latter case, the strength of the perturbation is driven by
the local information extracted from the dynamics itself.

Nonfeedback methods deal with the application of small
driving forces@6,7#. These methods slightly modify the dy-
namics of the system such that stable solutions appear. The
main advantage of nonfeedback schemes lies in their speed;
indeed, no on-line monitoring and processing is required.
Actually, they have been successfully applied in different
experimental frames. In addition to the above methods based
on small perturbations, there exist model-based approaches
of open loop control, introduced in Ref.@8#.

In this paper we will show that the chaotic behavior of a
CO2 laser with modulated losses can be controlled by a
negative feedback of a suitable spectral component of the
laser intensity. This control scheme~which can be obviously
classified as a feedback scheme! presents the relevant advan-
tage of being robust and fast, together with the characteristic
of requiring very low energy.

First of all, it is useful to recall some preliminary results
on the CO2 laser dynamics. The behavior of the CO2 laser
with modulated losses is quantitatively matched by a four
level scheme, which, besides the relatively fast radiative cou-
pling between the resonant molecular transition~populations
N1 ,N2) and the field intensity (I ), accounts also for the rela-
tively slower collisional transfer from the manifold of the
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other rotational levels~populationsM1 ,M2). Thus, the two
energy flows imply a set of five differential equations as
follows:

İ52k0@11msin~2p f t !#I1G~N22N1!I ,

Ṅ252~zgR1g2!N22G~N22N1!I1gRM21g2P,

Ṅ152~zgR1g1!N11G~N22N1!I1gRM1 ,

Ṁ252~gR1g2!M21zgRN21zg2P,

Ṁ152~gR1g1!M11zgRN1 , ~1!

where k053.183107 s21 is the intensity decay-rate,
gR57.03105 s21 is the relaxation rate between the lasing
states and the associated rotational manifolds~the enhance-
ment factorz510 represents the number of sublevels con-
sidered in each manifold!, g158.03104 s21 and
g251.03104 s21 are the relaxation rates of the vibrational
states,G58.7531028 s21 is the field-matter coupling con-
stant, and the dimensional parameterP55.4631014 repre-
sents the pump~the numerical values of these quantities are
chosen following Ref.@9#!. The parametersm and f repre-
sent the amplitude and the frequency of the external driving
signal. It is well known that fixingf in the range@70 kHz,
140 kHz# and increasing the control parameterm, the system
undergoes a subharmonic cascade~with fundamental period
T51/ f ) ending in chaos.

For a wide working range, this five dimensional model
can be reduced to the following set of three differential equa-
tions @10#:

ẋ15k8@x22~11msinVgRt!#,

ẋ252G1x222k8x2e
x11P01Peq1x3 , ~2!

ẋ352ax31hx2 ,

where x15 ln(GI/k0), x25G(N22N1)/k0 , x352Peq
1(G/k0)$@(g12g2)/2gR#(N11N2)1M22M1%, Peq
50.3887, k85k0 /gR , G15(g11g212zgR)/2gR ,
P05g2PG/k0gR , V52p f , and the time has been rescaled
as t5t/gR .

The reduction has been performed observing that, after a
suitable change of variables, the full model consists of two
blocks: the first one~containing two equations! is nonlinear,
while the second~containing the remaining three equations!
is linear and presents a frequency response which suitably
matches the transfer function of a low-pass first-order filter.
Thus, the three equations can be replaced with the third
equation of~2! for the variablex3 , while the values of the
parametersa50.9667 andh59.4656 can be obtained im-
posing that the two transfer functions have the same ampli-
tude for v50 and forv52p f 0 , f 0 being the cutoff fre-
quency~the detailed theory is presented in Ref.@10#!.

RedefiningP85P01Peq andk̃(t)511m sinVgRt, and
considering Eqs.~2! in the frequency domain (s5 iv), we
can represent the system as in Fig. 1~a!, whereL(s) and
G(s) are the linear transfer functions

L~s!5
2k8~s1a!

s21s~G11a!1~aG12h!
,

~3!

G~s!5
k8

s
.

It is interesting to observe that the reduced model~2! pre-
sents a structure directly comparable with the standard two
dimensional rate equation model. The addition of a filtering
process~the third equation! and a constant correction to the
pump term (Peq) takes into account the ballast effect induced
by the coupling among all the populations. Similarly, in the
frequency domain, the system of Fig. 1~a! can be obtained
from the standard rate equations, the only difference being
the simplified expression ofL(s) where a and h are set
equal to zero.

The control method here implemented is based upon a
feedback loop@Fig. 1~b!# wherein all unwanted frequency
components are transmitted as correction signals. The only
frequency components which are not affected by the loop are
the zero frequency~which controls the long time behavior!
and the modulation frequency which, as a consequence,
gives rise to a stable periodic orbit. This is achieved by the
insertion of a selective filter with a transfer function contain-
ing two zeros, atv50 and v5V, and a maximum at
v5V/2 @11#. This ‘‘intuitive’’ structure of the filter~called
‘‘washout filter’’! is modeled by the following transfer func-
tion:

C~s!5b
s~s21V2!

@s21jVs1~V2/4!#~s1mV!
, ~4!

wherej50.4, m51.5, andb is the gain factor~see Fig. 4!.
Driving the filter by the logarithm of the intensity~that is a
signal proportional tox1) and entering into the modulation
summing point~note that the filter dephasing essentially goes
to zero atv5V/2), is clearly equivalent in Fig. 1 to modify
the integratorG(s) into

G̃~s!5
k8

s1k8C~s!
,

FIG. 1. ~a! Logical diagram corresponding to Eq.~2!. The
blocks L(s) andG(s) correspond to the operators of Eq.~3!. ~b!
Feedback control circuit.C(s) is the filter of Eq.~4!, ‘‘Log’’ is a
logarithmic amplifier. In~a!, where the boxes correspond to con-
ceptual operators, 1 and 2 are physically accessible points to which
the feedback circuit~b! is connected.
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so thatG̃(0)5G(0) andG̃( iV)5G( iV), while uG̃u has a
minimum fors5 iV/2. This ensures in a simple way that the
subharmonic frequencyV/2 leading to the flip bifurcation
can not be present inx1(t) and a stable period-1 solution can
be obtained.

Numerical simulations confirm the validity of our scheme
and predict that the feedback signal, with control on, would
have an amplitude of the order of 3% of that of the external
driving signal~proportional tom).

The experimental setup is shown in Fig. 2. The cavity
losses have been modulated by driving the intracavity
electro-optic crystal~EOM! with a sinusoidal signal from a
reference oscillator~REF!. When the modulation frequency
is f5110 kHz, the period-1 limit cycle appears for
0,m,0.05, and the first chaotic window~generated after
the period doubling cascade! occurs for 0.14,m,0.24.
These two intervals ofm correspond to a signal from the
reference oscillator with amplitude in the ranges@0, 0.11 V#
and @0.32 V, 0.52 V#, respectively. In the control loop, the
laser intensity is detected, converted with a logarithmic am-
plifier ~with 5 MHz bandwidth and accuracy better than 2%!
and filtered so that only the signal with pulsationV/2 is fed
back to the electro-optic crystal~the numbers 1, 2, and 3
design the outputs where it is possible to measure the feed-
back signal!. Figure 3 presents the electronic scheme of the
filter and its frequency response@compared withC(s)#, re-
spectively.

Figures 4 and 5 show the main results of the experiment.
Figure 4~a! reports the chaotic laser oscillations (m50.18,
driving signal amplitude 0.4 V! observed in the output point
1 with open control loop, while Fig. 4~b! presents the cor-
responding feedback signal~measured in the output point
2!. The same signals are reported in Figs. 4~c! and 4~d!,
respectively, but in the case of closed control loop. The con-
trol signal of Fig. 4~d! has an amplitude less than 5 mV
which, compared with the amplitude of the driving signal
~0.4 V!, yields a 1.25% perturbation. In order to have a
confirmation of the perturbation smallness we have also
measured the amplitude of the high voltage signal~out-
put point 3! which drives the electro-optic crystal. We
have observed that closed control loop operation induces a
relative reduction of the unperturbed signal which is less
than 3%. Figure 5 presents a typical transition from chaotic
to periodic dynamics~same experimental conditions as in

Fig. 4!, characterized by a transient decay towards the final
state~the points represents maxima in the laser intensity sig-
nal!.

Regarding the possibility of stabilizing other period-n or-
bits with our control scheme, we can observe that the more
obvious way is to add other zeros in the filter transfer func-
tion ~i.e., to stabilize the period-2 orbit a further zero at
v5V/2 is needed!. Nevertheless, we have experimentally
observed that slight reductions of the gain of the feedback
loop ~through the variable gain amplifier denotedA in Fig. 2!
lead to the stabilization of period-2, period-4, and period-8
limit cycles. However, this results in an increment of the

FIG. 2. Experimental setup:G, grating; LT, laser tube; PS,
power supply; EOM, electro-optic modulator;M , mirror; REF, ref-
erence oscillator providing the sinusoidal driving signal;D, detec-
tor; P, preamplifier; LOG, logarithmic converter; FL, washout fil-
ter; A, variable gain amplifier. The points 1, 2, and 3 denote
available outputs.

FIG. 3. ~a! Electronic scheme of the washout filter:R151.0
kV, L156.5 mH, C150.1 nF, L2512.4 mH, C250.2 nF
and R256.7 kV. ~b! Amplitude and phase response curves of
the washout filter as a function ofv: solid and dashed lines de-
note the experimental and the theoretical@C(s)# filter, respec-
tively.

FIG. 4. Experimental results:~a! chaotic laser intensity without
control and~b! corresponding control signal;~c! and ~d! represent
the same signals as~a! and ~b!, respectively, but in the case of
activated control.
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relative value of the perturbation with respect to the driving
@for example, in the period-8 case, the signal corresponding
to Fig. 4~d! reaches an amplitude of about 20 mV#, due to the
fact that our scheme is originally planned to stabilize the
period-1 orbit.

At last, it can be interesting to make some important con-
cluding remarks. Besides the fact that low energy is required,
the control scheme presented in this paper can be in principle

very fast. As a matter of fact, in our experiment, the feedback
loop is entirely realized by analog electronics. Moreover, the
control is very robust, since it is independent of laser param-
eter fluctuations, and the application of this control strategy
to a nonautonomous system, such as a modulated laser, is not
restrictive. It could also be applied to autonomous systems
~laser with electro-optic feedback or with intracavity satu-
rable absorber! which display some dependence of the fun-
damental oscillation frequency on intrinsic experimental
drifts. We have, in fact, verified that the control still works if
the driving frequency is varied about65%.

As a final consideration, we observe that the main point of
our treatment is taming of chaotic behavior originating by a
nonlinearity of the formx2e

x1. Since this nonlinearity is the
typical one contained in the standard laser rate equations we
argue that this control method can be successfully applied to
any chaotic laser provided its destabilization occurs through
subharmonic bifurcations.
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FIG. 5. Typical transition from chaotic to stable period-1 oscil-
lations when the control is activated; the points represent maxima in
the laser intensity signal.
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